電致色變技術與應用研發

文•圖/陳林祈(生物產業機電工程學系助理教授)

了酷炫之外,隨著施加電位不同而改變 顏色的光學鍍膜能有多少實際應用?」 當我還是個大三學生時,看到老師在課堂上展示 電影「不可能的任務 I (Mission Impossible I)」 中 Ethan 配戴的變色太陽眼鏡,心裡便迷戀上這些 絢爛色彩的變色鍍膜-所謂的「電致色變」薄膜 (electrochromic thin films);但為了證明這樣的迷戀 有其價值,修課過程中我不斷地問自己上述這個 問題。雖然那學期結束後,我瞭解這些鍍膜可以 用在節能窗戶、太陽眼鏡、汽車後視鏡與顯示器 上,但眼見為憑,而且我想要創造更多有趣的應 用,於是便開啓了多年的電致色變研究歷程。本 文中,我將分享過去與研究伙伴們從事電致色變 技術與應用研發的成果;然而在進入主題之前, 我想先談談何謂「電致色變」以及哪些材料存在 這樣的特性。

淺談電致色變材料

顧名思義,「電致色變」(或稱「電變色」) 泛指藉由外加電場所引起的顏色變化現象,其成 因係電致色變材料會依氧化狀態的改變而呈現不 同的吸收光譜特性。而吸收光譜變化範圍可涵蓋 紫外光(190-400 nm)到近紅外光區間(700-3000 nm),且主要光學調幅發生在可見光範圍(400-700 nm),因此產生鮮豔的色彩變化。一般說 來,常見的材料可分為下列四大類:(1)過渡

金屬氧化物(transition metal oxides):節能窗戶中常 用的三氧化鎢(tungsten oxide)即為典型的代表,其 氧化狀態為無色、還原態則呈現藍色;(2)金 屬氰化鐵錯合物(metal hexacvanoferrates):由金屬離 子和赤血鹽(ferric cyanide)沈積而得,電化學可逆性 極佳,如普魯士藍(Prussian blue),還原態下無色透 明,但氧化後可顯現藍色或綠色;(3)雜環導 電高分子(heterocyclic conducting polymers):種類繁 多,色彩豐富,例如聚苯胺(polyaniline),可隨著氧 化電位的施加依序呈現淺黃色、綠色、藍色及紫 色的變化; (4)機聯啶分子(organic bipyridiliums): 例如與農藥巴拉刈(Paraquat)結構相 似的紫精分子(heptyl viologen)已廣泛地被用在高級 房車的變色後視鏡中,其氧化態為無色、還原態 呈現紫色。上述材料可以用不同的方式析鍍於透 明電極 ITO 或 FTO 玻璃上,例如濺鍍(sputtering)、 蒸鍍(evaporation)、電鍍(electrodeposition)、溶膠凝 膠法(sol-gel)...等,進而形成電致色變薄膜電極並組 成光電化學元件。以下章節將簡介電致色變薄膜 電極在「智慧型節能窗戶」、「電量視覺化之 薄膜電池」、「光誘導顯示技術」及「電致色 變生化感測器」方面的應用。

智慧型節能窗戶

面對後石油時代來臨,除積極開發高經濟效益 替代性燃料及再生能源之外,如何有效率地應用

珍貴能源更是重要的課題。而建築、交通方面之 省能材料研發便是當前節約能源科技趨勢,如近 年來興起的前瞻節能建築新概念便標榜善用再生 能源技術發展無須仰賴外部能源供應的「零耗能 住宅 (zero-energy home, ZEH)。 爲求早日實現 ZEH 的目標,積極開發具備自動日照調節(davlighting control)功能之節能窗戶是刻不容緩的課題,而電 致色變元件的主要應用與商業化潛力也在此處。 電致色變窗戶可藉由改變外加電位可逆地調控室 內入射光線之穿透率(如圖1(A)所示),進而調 節日照所引起的室內加熱現象(solar heating),有效 地减少空調系統運轉的負載與耗電量,因此電致 色變窗戶又被稱為「智慧型窗戶」(smart windows)。由兩片顏色互補之電致色變薄膜電極與 固態高分子電解質(solid polymer electrolyte)所組裝 而成的窗戶系統以低直流電壓操作(0.25-20 V),故亦可用太陽能電池(solar cells)驅動窗戶著 色(如圖1(B)所示),使得太陽能的應用更有效 率。根據美國國家再生能源實驗室(National Renewable Energy Laboratory, NREL)的研究資料顯示, 電 致色變窗戶的全面安裝可爲其國內節省數千兆英 熱單位(quadrillion or 10¹⁵Btu)之能源(註:目前美 國每年消耗的能源約為94千兆英熱單位),因此 電致色變窗戶無論在建築、汽車、船舶、航空器 乃至溫室與人工氣候室方面皆極富應用價值與商 業潛力。這些年來,我和研究伙伴們除了掌握元 件性能設計之關鍵因素,同時亦不斷開發新型電 致色變系統,以滿足未來「無窗簾時代」多色系 節能窗戶之需求。

電量視覺化之薄膜電池

隨著行動數位化生活時代來臨,輕薄短小的二次電池(secondary batteries,如鋰離子電池)已是人們享受數位科技不可或缺的要素並普遍地應用於 手機、數位照相機、數位隨身聽與筆記型電腦等 高科技電子商品。而如何監控電子產品使用過程 中電池剩餘電量,就如同在長程旅途中隨時掌握 汽車油量一樣重要。可惜的是,目前利用端電壓 (terminal voltage)量測的方法很容易造成電池剩餘電 量(殘電)的誤判,因爲電池端電壓與電量之間 的關係並非線性(而是近似階梯形的 Nerstian behavior),所以殘餘電量的顯示往往與實際狀況 相去甚遠。爲了解決上述問題,我和研究伙伴們 利用高電壓電致色變元件發展出「剩餘電量看得 見」的薄膜電池。其工作原理係使用兩片存在足 夠標準電位(standard potential)差異(例如1.35伏

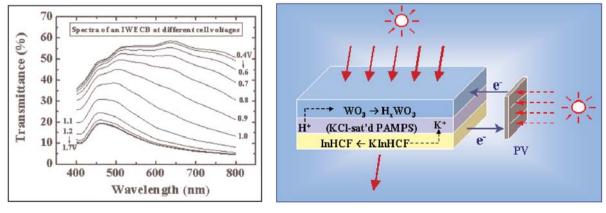


圖1:電致色變節能窗戶特性與太陽能應用

(B)

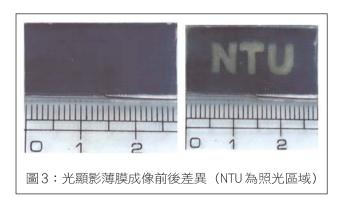
特)之電致色變薄膜電極組成二次 雷池,因此可產生和一般鎳氫 雷池 或乾雷池相當的放雷平台雷壓。由 於電致色變薄膜的光學密度變化與 反應電量成正比,因此使用者可輕 易且準確地判斷電池充電狀態(state of charge)。這類薄膜除可驅動低功 率元件,更可利用太陽能電池進行 充電,圖2展示了這方面的應用: 一開始未充電的薄膜電池為透明無 色,以太陽能電池進行充電後薄膜 電池漸漸呈現深藍色並開始驅動低 功率電子元件;待移除太陽能電池 後,薄膜電池仍能獨自驅動電子元 件達數小時以上(未使用節能模 式),而且在電量消耗過程中,薄

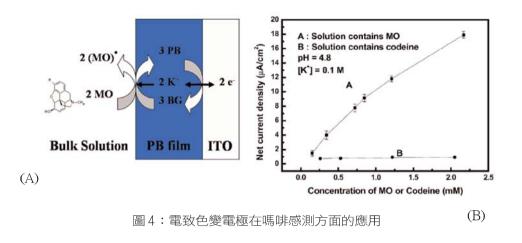
膜電池呈現相符比例的光學密度衰退。因此電量 視覺化的薄膜電池不但使用方便,在太陽能儲存 與低功率元件驅動方面皆極富應用價值。

光誘導顯示技術

既然可藉外加電場造成顏色變化,顯示器便是 可行的應用。近年來隨著薄膜電晶體(thin-film transistor, TFT)技術的成熟與導電高分子與奈米材料 技術的進步,使得電致色變顯示器的商業化潛力 開始受到重視,其原理和電致色變窗戶並無太大 差異,所以在此所欲介紹的是利用奈米光觸媒與 電致色變材料所共同實現之另一種應用:「光顯 影薄膜_(photo-imaging thin films)。究竟何謂「光 顯影薄膜」呢?圖3所示的就是這種薄膜在光影 像形成前後的差異:左圖為未曝光之薄膜;右圖 為曝光後薄膜顯像之情形,其中出現「NTU」字 樣部分為照光區域。顯像後的薄膜可利用外加電 場將先前形成之光影像除去,進而達到可重複顯

(Fully charged)


(Charging by PV)



(Removal of PV)

圖 2: 電致色變薄膜電池作為太陽能蓄電器與驅動低功率元件之應用

影的功能,這就是所謂的光顯影薄膜。欲構築光 顯影系統,需下列組成要素:(1)電致色變薄 膜電極:作為變色主體;(2)具特定能隙之奈 米光觸媒粒子:可產生光激發電子或電洞; (3)電解液:提供電洞或電子消耗劑與輔助離 子;(4)特定波段之顯影光源:用以激發光觸 媒產生電子電洞對,達成局部區域之光誘導電致 色變反應;(5)外部電路:經由外加電場使光 誘導變色區域恢復原有色澤。上述裝置除可應用 在光電顯示科技方面,亦可以作為「光致色變」

的同時,電致色變 薄膜亦會產生對應 的吸收度變化,因 此電致色變感測器 可以同步提供光學 及電學兩種訊號, 與傳統的電化學感 測器相較,使用者 可藉由更多元的光 電資訊準確地判讀 生化分子的濃度。

元件(photochromic devices)及光開關(light switches)之用。

電致色變生化感測器

由於電致色變元件中使用的金屬氰化鐵錯合物 和導電高分子電催化活性極佳,因此這些材料常 常被用來修飾貴重金屬和石墨電極作爲人工氧化 酵素(artificial oxidase)並應用在電化學感測器上。其 中普魯士藍(PB)是金屬氰化鐵錯合物材料的典型代 表,能快速傳遞電子,是良好的氧化還原媒介 (redox mediator),因此我和研究伙伴們近年來利用 普魯士藍及其類似物薄膜修飾 ITO 透明電極發展 出新型光電生化感測元件。我們依照圖 4(A)所示 的原理以成功地進行了嗎啡分子(morphine)的氧化 感測,且此感測電極可有效地避免可待因 (codeine,嗎啡類似物之一)的干擾,其定電流感測 數據如圖4(B)所示。相關的研究成果可配合高效液 相層析裝置(high-performance liquid chromatography) 應用在毒癮患者以及術後患者之麻醉藥物使用監 控。此外,因爲普魯士藍及其類似物同時也是電 致色變材料,所以可允許同步光學及電學之生化 感測。例如硫醇類(thiols)分子便可用修飾電致色變 薄膜之ITO電極進行陽極催化,在產生電流訊號 目前我在生物機電系除帶領著研究生持續發展 上述應用,也開始利用電致色變技術從事生物燃 料電池及核酸、蛋白質光電偵測平台開發。上述 多元的研發經歷,肇始於十年前所看到的酷炫變 色眼鏡。至於電致色變技術還會不會有新的應用 被發掘呢?我想答案是肯定的。

文章後記

謹以本文感謝上課生動並帶領我進入電致色 變領域的台大化工系何國川教授。聲(本欄本文 策畫/農推系岳修平教授)

延伸閱讀:

- [1]智慧型節能窗戶: L.-C. Chen and K.-C Ho, "Design Equations for Complementary Electrochromic Devices: Application to the Tungsten Oxide-Prussian Blue System," *Electrochim. Acta.*, 46, 2151-2158 (2001).
- [2]電量視覺化之薄膜電池: (a) L.-C. Chen, Y.-H. Huang,
 K.-S. Tseng, and K.-C. Ho, "Novel Electrochromic Batteries:
 I. A PB-WO₃ Cell with a Theoretical Voltage of 1.35V," *J.* New Mater: Electrochem. Systems, 5, 203-212 (2002); (b)
 L.-C. Chen, K.-S. Tseng, Y.-H. Huang, and K.-C. Ho, "Novel Electrochromic Batteries: II. An InHCF-WO₃ Cell with a High Visual Contrast," *J. New Mater. Electrochem. Systems*, 5, 213-221 (2002).
- [3]光誘導顯示技術:陳林祈、何國川,"光誘導電致色<mark>文</mark>轉